Molecular Medicinal Chemistry
http//www.idecefyn.com.ar
IDECEFYN

Optimized Calculation on the Inhibition of Carbonic Anhydrase Isozymes I and II by some Phenyl and Pyridyl Substituted Sulfanilamide Schiff's Bases

Germán Krenkel ${ }^{1}$ and Eduardo A. Castro ${ }^{\mathbf{2} *}$
${ }^{1}$ Departamento de Ingeniería de la Producción, Facultad de Ingeniería, Universidad Nacional de La Plata, Calles 1 y 47, La Plata 1900, Argentina, E-mail: GermanKrenkel@hotmail.com.
${ }^{2}$ CEQUINOR, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Calles 47 y 115, C.C. 962, La Plata 1900, Argentina, E-mail: castro@dalton.quimica.unlp.edu.ar / jubert@arnet.com.ar, http://preprint.chemweb.com/physchem/0210002

Abstract

Previous linear calculations on the inhibition of carbonic anhydrase isozymes I and II by some phenyl and pyridyl substituted sulfanilamide Schiff's bases are improved resorting to high-order fitting polynomials. Statistical parameters associated with the regression equations show a better predictive power for these new equations, which reveal the need to employ more general analytical fitting equations when dealing with this sort of Quantitative Structure Activity Relationships.

Keywords: QSAR theory - Carbonic anhydrase isozymes - Phenyl and pyridyl substituted sulfanilamide Schiff's bases.

Running title: Schiff's base inhibitors

* Corresponding author.

Introduction

Supuran and Clare have described a set of sulfanilamide Schiff's bases with carbonic anhydrase (CA) inhibitory properties, and published quantum Quantitative Structure-Activity Relationships (QSAR) for them on the basis of applying quantum mechanical molecular descriptors (17). After that, they have found a set of suitable quantum chemical descriptors, the socalled frontier orbital phase angles, which are highly useful in correlating the activities of benzene derivatives (2). Although originally derived as a mere numerical procedure using the coefficients of the $\operatorname{six} \mathrm{p}_{\mathrm{z}}$ atomic orbitals on the benzene ring carbon atoms (where the z axis is normal to the ring.), it was later shown to be directly related to the orientation of the nodes in the π orbitals on the benzene ring (3). Although the first publication related the hallucinogenic activity of phenylalkylamines to these new molecular descriptors, it was later shown that the activity of some serine protease inhibitors could also be correlated with these descriptors (18). A recent publication has extended this treatment to carbon anhydrase inhibitors (19) and these authors consider it is applicable whenever a pharmacophore demands an aromatic group, and the series of molecules in question can be considered as derived from benzene. Thus, they reanalyzed the data of reference (17) and showed that the correlation could be ameliorated using these new descriptors.

These authors presented the best six linear regression equations for 27 CA inhibitors (see equations 1-6 in Ref. 19) to relate the logarithm of the inhibitory concentrations (i.e. the concentration producing 50\% inhibition of the enzyme) of the compounds against CA isozymes I and II against to the calculated descriptors (see Table 2 in Ref. 19). The analysis of statistical parameters related to these optimal linear equations shows that there is room for improving the predictions. In fact, the largest correlation coefficient is $r=0.889$ (Eq. 6 in Ref. 19), while the lowest one is equal to 0.683 (Eq. 2 in Ref. 19).
Thus, the present contribution presents the results on higher order polynomial calculations which improve previous results and so yields better predictive equations through the simple expedient of resorting to fitting equations computed at orders larger than one. The paper is organized as follows: next section deals with a brief sketch of the calculation scheme and some previous antecedents. Then we present numerical results and discuss them, making suitable comparisons with previous published data. Finally, we give the conclusions on the proposed procedure and the evident advantages in resorting to this rather simple and direct method.

Calculation method

Multivariate regression analysis is one of the oldest, if not the oldest, data reduction technique that continues to be used in QSAR and Quantitative Structure-Property Relationship (QSPR) studies. Typically in such studies, after selecting the compounds and the property or activity to be analyzed, one considers selection of potentially useful descriptors. The major classes of descriptors used in QSAR and QSPR are physicochemical (such as $\log \mathrm{P}$, index of refraction, Hammet σ values, Taft's steric constant E_{s}), graph theoretical (for example, Wiener number, Hosoya's Z index, connectivity index ${ }^{1} \chi$, Balaban's J index) and quantum mechanical (such as, HOMO - LUNO gap, bond orders, electronic charges). It is clear that in each case a different model for the molecular structure under investigation is considered. Consequently, different results could be expected for the same structure-activity (property) study.

While each of these three major methods applied to QSAR/QSPR has its advantages which the respective proponents tend to overestimate, each of them has deficiencies that tend to be overlooked. In addition, multivariate regression analysis has some limitations as a data reduction technique, particularly in the manner in which it is often practiced (12). One special point to be taken into account is that although a rather satisfactory fitting equation could be found, it does not necessarily implies a direct cause-effect between the property or activity under study and the chosen independent variables (i.e. molecular descriptors).

Clearly, simple regression involving only a single descriptor restricts regression analysis considerably. Many correlations, particularly when involving molecules of different size, need not be linear. But even if we have molecules of the same or similar size, a quadratic regression may result in a better description of the relationship than a simple linear model. In general, one should test single descriptor regression for quadratic dependence and, if warranted, for higher polynomial relationships or other functional dependence.

Some previous results on studying multivariate higher order relationships to analyze several physical chemistry properties and biological activities has shown the convenience of resorting to higher-order equations in order to get suitable fitting equations giving satisfactory predictions (1,4-11,13-16,21)

We have chosen the same molecular set comprising 27 molecules as described in Ref. 5 and identical molecular descriptors to calculate $\log \mathrm{C}_{\mathrm{iI}}$ and $\log \mathrm{C}_{\mathrm{iII}}$ in order to be able to perform a comparison analysis between present results and those previously published. They are displayed in Tables $\mathbf{1}$ and 2, respectively.

Table 1. Structures and IC_{50} for CA I and CA II of the CA inhibitors.

* The value reported in Table in Ref. 19 is 0.65 , but the true figure is 0.95 (Clare, B. W., personal communication).

Molecular Medicinal Chemistry

Table 2. Molecular descriptors in this study corresponding to the molecular set in Table 1.

Molecule*	$-\boldsymbol{Q}_{\boldsymbol{N}}(\boldsymbol{e})$	$-\boldsymbol{\mu}_{\boldsymbol{x}}(\boldsymbol{D})^{\#}$	$\boldsymbol{\mu}(\boldsymbol{D})^{\#}$	$\boldsymbol{D}_{\boldsymbol{l}}(\boldsymbol{e})$	$\boldsymbol{\operatorname { l o g } \boldsymbol { P }}$	$\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{l}}$	$\boldsymbol{\Phi}_{\boldsymbol{H}}\left({ }^{\circ}\right)$	$\boldsymbol{\Phi}_{\boldsymbol{L}}\left({ }^{\circ}\right)$
$\mathbf{1}$	1.1912	6.143	8.444	0.8013	1.23	10.50	89.2	45.5
$\mathbf{2}$	1.1931	7.893	9.746	0.8330	0.56	10.62	47.8	17.5
$\mathbf{3}$	1.1841	7.259	11.515	0.8249	0.97	10.39	113.1	82.2
$\mathbf{4}$	1.1905	4.535	7.475	0.7947	1.94	10.47	90.6	15.6
$\mathbf{5}$	1.1915	6.011	9.211	0.8335	0.56	10.62	91.2	44.7
$\mathbf{6}$	1.1879	6.196	7.859	0.7632	1.14	10.50	87.9	44.7
$\mathbf{7}$	1.1856	7.651	9.739	0.7056	1.42	10.62	88.8	44.7
$\mathbf{8}$	1.1890	-1.762	6.458	0.8224	0.97	10.39	0.8	44.9
$\mathbf{9}$	1.1916	0.880	6.174	0.7685	0.66	10.41	2.0	45.0
$\mathbf{1 0}$	1.1944	5.241	8.769	0.7405	0.41	10.66	70.3	41.5
$\mathbf{1 1}$	1.1860	5.235	7.246	0.6896	0.68	10.53	66.1	19.1
$\mathbf{1 2}$	1.1933	6.215	10.473	0.7114	0.12	10.50	122.1	11.5
$\mathbf{1 3}$	1.1942	3.975	7.651	0.7974	0.12	10.67	169.9	14.8
$\mathbf{1 4}$	1.1935	4.596	8.128	0.7377	0.36	10.60	169.9	14.3
$\mathbf{1 5}$	1.1870	3.086	7.526	0.6492	0.12	10.57	86.8	14.4
$\mathbf{1 6}$	1.1855	3.547	7.475	0.7473	1.20	10.63	67.9	19.6
$\mathbf{1 7}$	1.1779	6.349	7.935	0.8291	-0.27	9.96	65.2	14.8
$\mathbf{1 8}$	1.1716	4.606	5.664	0.8425	-0.27	10.02	105.1	15.1
$\mathbf{1 9}$	1.1755	2.392	4.208	0.8274	-0.27	10.02	179.4	14.1
$\mathbf{2 0}$	1.1684	6.130	6.702	0.6013	4.27	10.05	104.6	45.5
$\mathbf{2 1}$	1.1701	6.247	7.199	0.5876	4.19	10.00	113.2	45.4
$\mathbf{2 2}$	1.1698	8.736	9.281	0.5647	4.47	10.09	104.9	45.4
$\mathbf{2 3}$	1.1793	2.895	3.452	0.5363	3.16	10.10	114.7	14.5
$\mathbf{2 4}$	1.1769	2.042	2.742	0.5344	3.16	10.12	92.4	43.9
$\mathbf{2 5}$	1.1842	-0.641	6.611	0.6193	4.01	10.03	91.0	16.2
$\mathbf{2 6}$	1.1714	2.104	2.351	0.5665	2.09	10.20	89.5	15.8
$\mathbf{2 7}$	1.1730	2.864	3.443	0.4730	5.05	10.10	90.1	15.1
* Numbering as in Table 1.								
Columns 3 and 4 in Table III of Ref. 19 are transposed each other (Clare, B. W., personal								
Communication).								

We have made a complete regression analysis resorting to first, second,, fifth relationships in several independent variables as computed in Ref. 5 for the most significant fitting equations 2, 4-6. Computations were carried out by means of the Mathematica ${ }^{\circledR}$ software (20).

Results and discussion

We present in Tables 3-6 the statistical parameters for first up to fifth-order fitting polynomials for regression equations 2, 4-6 of Ref. 19. The calculated equations have the following general form

$$
\begin{align*}
& \log C_{i I I}=f\left(Q_{N}, \mu_{x}, D_{1}, a\right) \tag{1}\\
& \log C_{i I I}=f\left(Q_{N}, D_{1}, \cos 2 \varphi_{H}, a\right) \\
& \log C_{i I I}=f\left(Q_{N}, D_{1}, \cos 2 \varphi_{H}, \sin 2 \varphi_{H},\right. \text { a) } \tag{2}\\
& \log C_{i I}=f\left(\mu_{\mathrm{x}}, \mu, D_{1}, \log P, p K_{1}, a\right)
\end{align*}
$$

where: C_{iI} and $\mathrm{C}_{\mathrm{iII}}$ are IC_{50} for CA I and II, respectively
(the concentration that produces 50% inhibition of the enzyme, allowing for the uncatalyzed rate); Q_{N} is the ESP-based charge on sulfonamide N (e); ESP is the electrostatic potential; μ_{x} is the X-component of ESPbased dipole moment (Debye). The origin is at the center of the sulfanilamide benzene ring, the 1-carbon of this ring on the positive X axis; μ is the magnitude of ESPbased dipole moment (Debye); D_{1} is the local dipole index (e/bond); $\log \mathrm{P}$ is the lipophilicity; pK_{1} is the pK_{a} of the sulfonamide $\mathrm{N} ; \varphi_{\mathrm{H}}$ is the HOMO node angle $\left({ }^{\circ}\right)$; HOMO is the highest occupied molecular orbital; and a is the independent term in the polynomial relationships 14.

Fitting polynomials in several variables do not present cross terms, so that, for example, second-order general equation 1 has the algebraic structure
$\log \mathrm{C}_{\mathrm{iII}}=\mathrm{A} \mathrm{Q}_{\mathrm{N}}+\mathrm{B}\left(\mathrm{Q}_{\mathrm{N}}\right)^{2}+\mathrm{C} \mu_{\mathrm{x}}+\mathrm{D}\left(\mu_{\mathrm{x}}\right)^{2}+\mathrm{ED}_{1}+\mathrm{F}(\mathrm{D} 1)^{2}+\mathrm{a}$
Complete listings of adjusting coefficients in polynomial equations 1-4 are disposable upon request to one of us (E. A. C.).

Table 3. Statistical parameters corresponding to Eq.(1) [Eq.(2) in Ref. 19].

Equation order	r^{2+}	F^{\wedge}	P $\times 10^{6 \#}$	$A v^{*}$	S^{28}
First	0.6840	16.60	6	0.082	0.097
Second	0.8123	14.43	2	0.049	0.066
Third	0.8387	9.82	36	0.057	0.067
Fourth	0.9122	12.12	21	0.023	0.044
Fifth	0.9203	8.47	514	0.021	0.051
+ Square c	relatio	n coef	ficient,	Rat	${ }^{\#} \mathrm{P}$

Table 4. Statistical parameters corresponding to Eq. (2) [Eq. (4) in Ref. 19].

Equation Order	$\boldsymbol{R}^{\mathbf{2}}$	\boldsymbol{F}	$\boldsymbol{P x} \mathbf{1 0}^{\mathbf{6}}$	$\boldsymbol{A v}$	$\boldsymbol{S}^{\mathbf{2}}$
First	0.6046	11.72	73	0.103	0.121
Second	0.6723	6.84	465	0.085	0.115
Third	0.7161	4.77	2797	0.074	0.117
Fourth	0.7300	3.15	21878	0.070	0.136
Fifth	0.8663	4.75	6416	0.035	0.085

Table 5. Statistical parameters corresponding to Eq. (3) [Eq. (5) in Ref. 19].

Equation Order	\boldsymbol{R}^{2}	\boldsymbol{F}	$\boldsymbol{P x} 10^{\mathbf{6}}$	$\boldsymbol{A v}$	$\boldsymbol{S}^{\mathbf{2}}$
First	0.6283	9.30	148	0.097	0.119
Second	0.6852	4.90	2468	0.082	0.123
Third	0.7226	3.04	25353	0.072	0.139
Fourth	0.7340	1.72	192413	0.069	0.187
Fifth	0.8700	2.01	197574	0.033	0.152

Table 6. Statistical parameters corresponding to Eq. (4) [Eq. (6) in Ref. 19].

Equation Order		\boldsymbol{F}	$\boldsymbol{P} \times \mathbf{1 0}^{\mathbf{6}}$	$\boldsymbol{A v}$	\boldsymbol{S}^{2}
First	0.7901	15.81	2	0.018	0.026
Second	0.8689	10.60	26	0.013	0.022
Third	0.9406	11.61	114	0.006	0.014
Fourth	0.9519	5.93	17673	0.005	0.021
Fifth	0.9814	2.11	502616	0.002	0.049

Although first order equations were calculated previously by Supuran and Clare [5] we have included statistical parameters into Tables 3-6 since there are some minor disagreements between both set of results (see second line in Tables 3-6 and statistical parameters adjoined to equations 2, 4-6 in Reference 19).

The analysis of data presented in Tables 3-6 shows that results improved markedly when polynomial order increases (see specially second and fifth columns in Tables 3-6). Particularly noticeable are predictions
derived from Eq.(4), where average absolute deviation decreases by a factor 9 when passing from first to fifth order fitting polynomial. However, remaining equations also improved at a large extent when resorting to higherorder polynomials.

In order to appreciate in a better way the results we present in Tables 7 and 8 some predicted values in order to compare them with experimental data and the

Molecular Medicinal Chemistry
degree of improvement when resorting to higher order
fitting polynomials.

Table 7. Experimental and predicted values of $\log \mathrm{C}_{\mathrm{iII}}$ (Eq.1)

Molecule	$-\log \boldsymbol{C}_{\text {III }}$ (exper.)	$-\log \boldsymbol{C}_{\text {III }}$ (first order)	$-\log \boldsymbol{C}_{\text {iII }}$ (second order)	$-\log \boldsymbol{C}_{\text {iII }}$ (third order)	$-\log \boldsymbol{C}_{\text {iII }}$ (fourth order)	$-\log \boldsymbol{C}_{\text {iII }}$ (fifth order)
$\mathbf{1}$	6.569	6.854	6.781	6.736	6.510	6.567
$\mathbf{2}$	6.387	6.634	6.441	6.477	6.507	6.480
$\mathbf{3}$	6.678	6.849	6.592	6.579	6.718	6.727
$\mathbf{4}$	6.553	6.983	6.952	6.847	6.757	6.821
$\mathbf{5}$	6.721	6.778	6.581	6.586	6.507	6.492
$\mathbf{6}$	6.721	7.001	6.986	6.899	6.734	6.721
$\mathbf{7}$	7.097	7.091	7.105	7.072	7.035	6.972
$\mathbf{8}$	7.301	7.334	7.313	7.309	7.353	7.305
$\mathbf{9}$	6.959	7.256	7.406	7.236	7.058	7.016
$\mathbf{1 0}$	7.097	7.004	7.191	7.310	7.447	7.434
$\mathbf{1 1}$	7.523	7.274	7.341	7.333	7.377	7.378
$\mathbf{1 2}$	7.000	7.033	7.195	7.289	7.141	7.104
$\mathbf{1 3}$	7.699	6.947	7.015	7.058	7.304	7.375
$\mathbf{1 4}$	7.523	7.067	7.244	7.282	7.310	7.289
$\mathbf{1 5}$	7.523	7.490	7.570	7.524	7.625	7.673
$\mathbf{1 6}$	7.398	7.247	7.306	7.178	7.363	7.325
$\mathbf{1 7}$	7.046	7.003	6.832	6.973	6.966	7.021
$\mathbf{1 8}$	7.097	7.188	7.215	7.241	7.238	7.166
$\mathbf{1 9}$	7.301	7.296	7.287	7.314	7.322	7.359
$\mathbf{2 0}$	8.252	7.738	8.106	8.020	8.295	8.267
$\mathbf{2 1}$	7.824	7.735	7.959	8.034	7.796	7.836
$\mathbf{2 2}$	7.772	7.641	7.734	7.667	7.729	7.765
$\mathbf{2 3}$	7.629	7.911	7.641	7.746	7.874	7.820
$\mathbf{2 4}$	7.896	8.010	7.806	7.913	7.831	7.765
$\mathbf{2 5}$	8.187	7.863	7.963	8.048	8.084	8.174
$\mathbf{2 6}$	8.071	8.023	8.186	8.214	7.972	7.966
$\mathbf{2 7}$	7.606	8.177	7.683	7.543	7.572	7.602
Average					0.023	
absolute	-	$\mathbf{0 . 0 8 2}$	$\mathbf{0 . 0 4 9}$	$\mathbf{0 . 0 5 7}$	$\mathbf{0 . 0 2 1}$	
$\mathbf{d y}$						

deviation

Evidently, results improve markedly when passing from linear relationships to high-order fitting polynomials and average absolute deviations are rather low.

Conclusions

Usually, QSAR/QSPR adopt a first-order polynomial form when predictive equations relating biological activities and physical chemistry properties with molecular descriptors are developed. However, from a formal point of view there is not any restrictions to employ more general mathematical formulations (12). One obvious way to generalize first-order multivariate formulae is to adjust data to higher-order fitting polynomials, and this resource has shown to be really effective to ameliorate the predictive power of simple linear equations(1,4-11,13-16,21). This paper has dealt with previous results on the data on the inhibition of carbonic anhydrase isozymes I and II by some phenyl and pyridyl substituted sulfanilamide Schiff's bases where activity can be better explained by considering the
directions of the nodes in π-like near frontier orbitals in the molecules (19). The analysis of the former modeling equations showed us there was room for studying some possible improvements through the employment of
higher-order fitting polynomials, so that this study presented these multivariate equations for the same molecular set as chosen before(19). Comparison of the statistical parameters associated with the previous and present regression equations shows clearly the superior quality of the latter ones and these findings are in line with some formerly published results and demonstrates the convenience of resorting to these more general polynomial forms in the QSAR analysis.

A possible further step in this regard is to analyze the employment of more general mathematical forms in the fitting predictive equations in such a way to choose arbitrary functions of the independent variables instead of the variables themselves. Research in this line is under development and results will be published elsewhere in the forthcoming future.

Table 8. Experimental and predicted values of $\log \mathrm{C}_{\mathrm{iI}}$ (Eq. 4)

Molecule	$\begin{aligned} & \hline \log C_{i I} \\ & (\text { exper. }) \end{aligned}$	$\begin{aligned} & \hline \log C_{i I} \\ & \text { (first order) } \end{aligned}$	$\begin{aligned} & \hline \log C_{i I} \\ & \text { (second order) } \end{aligned}$	$\begin{aligned} & \hline \log C_{i I} \\ & \text { (third order) } \end{aligned}$	$\begin{aligned} & \hline \log C_{i I} \\ & \text { (fourth order) } \end{aligned}$	$\log C_{i I}$ (fifth order)
1	4.745	4.817	4.759	4.780	4.751	4.714
2	4.456	4.819	4.717	4.571	4.610	4.526
3	5.046	5.131	5.025	5.025	5.038	5.042
4	4.602	4.613	4.637	6.641	4.631	4.607
5	4.854	4.871	4.869	4.723	4.711	4.809
6	4.886	4.857	4.813	4.866	4.867	4.990
7	5.000	4.919	4.902	4.939	4.931	4.919
8	4.886	5.155	4.946	4.941	4.920	4.879
9	5.398	5.203	5.169	5.305	5.390	5.370
10	5.301	5.134	5.252	5.415	5.430	5.384
11	5.155	5.163	5.142	5.033	5.053	5.117
12	5.523	5.554	5.544	5.548	5.536	5.543
13	5.398	5.021	5.154	5.220	5.273	5.354
14	5.301	5.185	5.261	5.295	5.253	5.211
15	5.301	5.557	5.553	5.396	5.381	5.342
16	4.921	4.874	5.006	5.066	5.005	4.963
17	5.699	5.593	5.599	5.656	5.701	5.689
18	5.398	5.382	5.398	5.414	5.383	5.405
19	5.398	5.407	5.505	5.467	5.417	5.399
20	4.680	4.654	4.797	4.655	4.689	4.684
21	4.721	4.747	4.828	4.802	4.820	4.705
22	4.796	4.759	4.655	4.785	4.742	4.791
23	4.971	4.989	4.911	4.959	4.938	4.977
24	4.903	4.956	4.890	4.897	4.927	4.893
25	5.201	5.086	5.211	5.146	5.146	5.219
26	4.975	5.078	5.000	4.961	4.966	4.979
27	4.602	4.592	4.573	4.608	4.606	4.604
Average absolute deviation	-	0.018	0.013	0.006	0.005	0.002

Acknowledgments

Authors thank very much Prof. Clare some personal correspondence dealing with numerical data published previously in Ref. 5 and also he valuable comments and suggestions of referees, which have been really useful to improve the final version of this article.

References

(1) Castro, E. A. and Tueros, M. J., QSPR Study of boiling points of alkyl alcohols via improved polynomial relationships. Philip. J. Sci. 2001, 130: 83-89.
(2) Clare, B. W., The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem. 1998, 41: 3845-3860.
(3) Clare, B. W., The frontier orbital phase angles: a theoretical interpretation. J. Mol. Struct. THEOCHEM, 2000, 507: 157-164.
(4) Duchowicz, P. and Castro, E. A., Improved atom equivalents method for converting DFT energies
calculated on molecular mechanics structures to heat of formation. Arkivoc 2001, 2: 227-241.
(5) Duchowicz, P., Castro, E. A. and Toropov, A.A., QSPR Modeling of normal boiling points of aldehydes, ketones and esters by means of nearest neighboring codes correlation weighting. J. Arg. Chem. Soc. 2002, 90: 91107.
(6) Duchowicz, P, Castro, E. A. and Toropov, A.A., Improved QSPR analysis of standard entropy of acyclic and aromatic compounds using optimized correlation weights of linear graph invariants. Comput. Chem. 2002, 26: 327-332.
(7) Krenkel, G., Castro, E. A. and Toropov, A. A., 3D and 4D molecular models derived from the ideal symmetry method. Prediction of alkanes normal boiling points. Chem. Phys. Lett. 2002, 355: 517-528.
(8) Marinich, J. A., Maguna, F., Okulik, N. B. and Castro, E. A., An optimal characterization of structure by means of several connectivity and complexity indices. Pol. J. Chem. 2002, 76: 589-600.
(9) Marino, D. J. G., Peruzzo, P. J., Castro, E. A. and Toropov, A. A., QSAR Carcinogenic study of methylated PAHs based on topological descriptors derived from distance matrices and correlation weights of local graph invariants. Internet Electron. J. Mol. Des. 2002, 1: 108133
(10) Mercader, A., Castro, E. A. and Toropov, A.A., Maximum topological distance based indices as molecular descriptors for QSPR. 4- Modeling the enthalpy of formation of hydrocarbons from elements. Int. J. Mol. Sci. 2001, 2: 121-134.
(11) Peruzzo, P. J., Marino, D. J. G., Castro, E. A. and Toropov, A. A., Calculation of pK values of flavylium salts from the optimization of correlation weights of local graphs invariants. J. Mol. Struct. THEOCHEM 2001, 572: 53-60.
(12) Randic, M. and Basak, S. C., Variable Molecular Descriptors, in Some Aspects of
Mathematical Chemistry, Sinha, D. K. Basak, S. C., Mohany, R. K. and Busa, I. N. Mallick, Eds., VisvaBharati University Press, Santiniketan, India, 1999.
(13) Romanelli, G. P., Martino, C. M. and Castro, E. A., Modeling the solubility of aliphatic alcohols via molecular descriptors. J. Chem. Soc. Pak. 2001, 23: 195199.
(14) Romanelli, G. P., Jíos, J., Autino, J. C., Cafferata, L. F. R. and Castro, E. A., Relationship between Kóvats retention indices and molecular descriptors of 1-(2-hydroxy)-3-arylpropane-1,3-diones. TheScientificWorld 2001, 1: 897-905.
(15) Romanelli, G. P., Jíos, J., Autino, J. C., Cafferata, L. F. R., Ruiz, D. and Castro, E. A., Application of
quantitative structure-retention relationships to calculate chromatographic retention times of o phenylhydroxylacetyl esters. Chem. Anal. (Warsaw) 2002, 47: 205-217.
(16) Romanelli, G. P., Autino, J. C. and Castro, E. A., Application of quantitative structure-retention relationships (QSRR) to a set of organic bromo and nitrile derivatives. Turk. J. Chem. 2002, 26: 335-343.
(17) Supuran, C. T. and Clare, B. W., Quantum chemical quantitative structure-activity relationships for a group of sulfanilamide. Eur. J. Med. Chem. 1998, 33: 489-500.
(18) Supuran, C. T., Scozzafava, A., Briganti, F. and Clare, B. W., Protease inhibitors: Synthesis and QSAR study of novel classes of nonbasic thrombin inhibitors incorporating sulfonylguanidine and O methylsulfonylisourea moieties at P1. J. Med. Chem. 2000, 43: 1793-1806.
(19) Supuran, C. T. and Clare, B. W., Orbital symmetry in QSAR: Some Schiff's base inhibitors of carbonic anhydrase. SAR QSAR Environ. Res. 2001, 12: 17-29.
(20) Tan, P. T. A Physicist's Guide to Mathematica ${ }^{\circledR}$, Academic Press, New York, 1997.
(21) Tueros, M. J., Castro, E. A. and Toropov, A. A., Maximum topological distance based indices as molecular descriptors for QSPR. 3- Calculation of hydrophobicity of polyaromatic hydrocarbons. J. Mol. Model. 2001, 7: 178-183.

